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Abstract The aim of this paper was to compare differ-
ent methods for testing the presence of one versus
multiple QTLs on a same chromosome. We describe
different methods that have partially been taken out of
the literature. We perform simulations covering differ-
ent situations to compare the power of these methods
for detecting more than one QTL. None of the tests
considered appear to be similar; that is, the first-type
error depends on the value of the parameters concern-
ing the first QTL. The method starting with a two-QTL
model is the most powerful in many situations.

Key words QTL detection · Mapping · Simultations

Introduction

Following the investigation of Sax (1923), many
methods have been developed for detecting quantitat-
ive trait loci (QTLs) using marker information. It is
possible to estimate the map location of QTLs and the
additive or dominant effect of a QTL using ‘‘interval
mapping’’ procedures based on maximum likelihood
estimation (Lander and Botstein 1989) or on linearized
approximation of maximum likelihood (Knapp et al.
1990; Haley and Knott 1992). However, one difficult
problem is to test if one or more than one QTLs are
present on a same chromosome.

A real issue in QTL analysis would be to estimate the
number of QTLs and not only if there is more than one
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QTL on a chromosome. Our reasoning suggests that
this search is possible with QTLs with large effects
using, for example, the methods developed by Zeng
(1993, 1994), but that for the effect usually observed in
real data analysis, it is frequently only possible to
answer the question ‘‘one or more than one QTL’’. In
the following we will focus our attention on this ques-
tion, and we will consider essentially QTLs with small
or moderate effect; that is, for example, a QTL explain-
ing less than 25% of the total phenotypic variance in an
experiment with 150 individuals or less than 10% for
500 individuals.

Different authors have proposed a variety of
methods that can be used to build a test answering such
a question. Lander and Botstein (1989) proposed using
an interval mapping test to determine the more likely
position of the QTLs and then computing a least-
square method that included these two QTLs in the
model. Jansen (1993, 1994) proposed using some
marker genotypes chosen on the basis of value of
Akaike criteria as covariates in the interval mapping
test. The principle of this criterion is to give a penalty
for fitting more parameters. Zeng (1993, 1994) con-
sidered a somewhat similar method. He proposed look-
ing for QTL in each interval between two markers with
an interval mapping test, using all the other marker
genotypes as covariates. Whittaker et al. (1996) pro-
posed to use a linear model that included the effect of
several QTL and to use ANOVA tests.

In this paper, we will make use of these ideas and of
new ideas to construct different tests. In an attempt to
compare fairly the power of these tests, we propose to
calculate a threshold for each test such that the first-
type error is less than or equal to 5% for all possible
locations and effects of the first QTL present under
the H

0
hypothesis. We then compare the power of

the different tests using simulations in different
situations including two QTLs. To simplify the
computation, we make all the comparisons in a back-
cross population.



The following section describes the notations and
models which will be used for the different tests.

Models for one or two QTLs

We consider a backcross population of size n and
a chromosome of length ¸ and M markers located at
position dM

1
,2 , dM

m
,2 , dM

M
. Consider a first QTL Q

1
with two alleles QA

1
and QB

1
, and therefore two geno-

types QA
1
]QA

1
and QA

1
]QB

1
, located at a position d

1
from the beginning of the chromosome and a second
QTL Q

2
with two alleles QA

2
and QB

2
, and therefore two

genotypes QA
2
]QA

2
and QA

2
]QB

2
, located at a position

d
2
. The mean difference between genotypes QA

i
]QA

i
and QA

i
]QB

i
is denoted a

i
, for i"1, 2. We assume no

epistasis between the two QTLs. The genotypic value
of the four genotypes at both loci is therefore
k#(1

QA
1
!1

2
)a

1
#(1

QA
2
!1

2
)a

2
, where 1

QA
i

is the in-
diocator variable for genotype QA

i
]QA

i
for i"1, 2.

The trait value has a normal distribution with resid-
ual variance p2. For each individual k"1,2 , n, we
measure the value of a phenotypic trait y

k
and a set of

markers M
m,k

, m"1,2 , M, that take the value A or
B corresponding to the two alleles of the marker. The
vector of phenotypic observation will be denoted by ½,
and the vector of all marker information by M. The
probability, for the individual k, to carry the alleles QA

i
conditional on the marker information M will be de-
noted by GM (k, i, d

i
), for i"1, 2.

In the case of one QTL, this leads to the mixture
model:

y
k
is normally distributed with expectation k#a

1
/2

and variance p2 with a probability GM(k, 1, d
1
), and

normally distributed with expectation k!a
1
/2 and

variance p2 otherwise.
The mixture model can be approximated by the

following linear model for each observation y
k
(Knapp

et al., 1990 or Haley and Knott 1992)

y
k
"k#a

1
(GM (k, 1, d

1
)!1

2
)#e

k

where e
k
is normally distributed, with null expectation

and variance p2.
In the case of two QTLs, the approximate linear

model is

y
k
"k#a

1
(GM (k, 1, d

1
)!1

2
)

#a
2
(GM(k, 2, d

2
)!1

2
)#e

k
.

In the following we will consider that no interference
is present and therefore will use the Haldane’s mapp-
ing function. This function will associate the
distance d with the recombination probability r(d)"
0.5(1!exp(!2d)).

The log-likelihood will be denoted by ¸(a
1
, d

1
, k, p)

for the one-QTL linear model, and by
¸(a

1
, d

1
, a

2
, d

2
, k, p) for the two-QTLs linear

model. The interval mapping test for one QTL is the

log-likelihood ratio test ¹ *1+ of the hypothesis H
1

‘‘a
1
O0’’ against the null hypothesis H

0
‘‘a

1
"0’’

¹*1+"2A sup
(a1,d1,k,p)

¸(a
1
, d

1
, k, p)! sup

(a1/0,k,p)
¸(a

1
, d

1
, k, p)B.

Methods starting with a single-QTL model

Consider an interval mapping test ¹ *1+. The position of the max-
imum of the test is denoted dK

1
and the marker interval enclosing this

position jK
1
. Now, we consider two possible tests.

In the first, denoted ¹ *2+
1

and called ‘‘fixed first QTL’’, we consider
the position dK

1
as fixed and compute a log-likelihood ratio test for

the second QTL

¹ *2+
1
"2A sup

a1,a2,d2,k,p
¸ (a

1
, dK

1
, a

2
, d

2
, k, p)

! sup
a1,a2,d2,k,p

¸(a
1
, dK

1
, a

2
"0, k, p)B

In the second, we consider the interval containing the first QTL as
the correct one, and therefore use a linear model where the two
flanking markers of the interval jK

1
are used as covariates X

1
and X

2
,

that is for i"1, 2, X
i
"1 if the marker alleles is A and 0 otherwise

y
k
"k#a

2
(GM(k, 2)!1

2
)#X

1
b
1
#X

2
b
2
#e

k
.

The test ¹ *2+
2

, called ‘‘fixed first-QTL interval’’, is the log-likeli-
hood ratio test of the hypothesis ‘‘a

2
O0’’ against ‘‘a

2
"0’’ under

this model.
The procedure for the two tests is the following

— compute ¹ *1+. If ¹ *1+(j decide ‘‘there is no QTL’’. The threshold
j is chosen such that the first-type error is a

1
.

— if ¹ *1+'j, then compute ¹ *2+
i

for tests i"1 or i"2. If ¹ *2+
i

'j
i

then decide that more than one QTL exists.

For i"1, 2, the threshold j
i
is chosen such that

Pr(¹ *2+
i

'j
i
and ¹ *1+'j)4a

2

for a
2
"0 and all possible values of a

1
, d

1
, k, p.

If the value of the parameter a
1

is sufficiently large (say a
1
'A),

the information matrix is definite-positive and therefore the para-
meters can be consistently estimated that is the estimation converges
toward the true values of the parameters. In this case, it is possible to
find a threshold j

i
such that

Pr(¹ *2+
i

'j
i
and ¹ *1+'j)"a

2

for a
2
"0, a

1
'A, and all possible values of the parameters.

For QTL with moderate effects, this is not true. The parameters
k and p2 can be estimated consistently, but it is not the case for a

1
and d

1
(Mangin et al. 1994). We therefore propose to calculate

a threshold j
i
(a

1
, d

1
) by Monte-Carlo simulations for different

values of the parameters a
1
and d

1
and to take the threshold j

i
as the

maximum of these thresholds.

Method starting with a multiple-QTL model

Consider now an interval mapping test for each interval j between
two markers, where all of the M!2 other markers are used as
covariates in the model. The test statistic in interval j is denoted by
¹ (j)

3
and called ‘‘multiple-QTL model’’. One possible procedure to

test whether or not there is more than one QTL is the following:

— Compute ¹ *1+
3
"max

j
¹(j)

3
"¹(j1)

3
and ¹ *2+

3
"max

jOj1~1, j1, j1`1
¹ (j)

3
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— If ¹ *1+
3
'j

3
and ¹ *2+

3
'j

3
decide there is more than one QTL.

The threshold j
3

is chosen such that

Pr(¹ *2+
3

'j
3

and ¹ *1+
3
'j

3
)"Pr(¹ *2+

3
'j

3
)4a

2

for a
2
"0 and all possible values of a

1
, d

1
, k, p.

As for tests ¹ *2+
1

and ¹ *2+
2

, the threshold j
3

is taken as the
maximum of the thresholds obtained by simulations for different
values of the parameters a

1
and d

1
.

Method starting with a two-QTL model

Let ¸*2+ be the maximum of the log-likelihood ¸ (a
1
, d

1
, a

2
, d

2
, k, p)

corresponding to the two-QTL model and dK
1

and dK
2
, the maximum

likelihood estimator of the parameters d
1

and d
2
. This maximization

is done under the constraint that the two QTLs locations are not in
adjacent intervals. The same kind of constraint is used by Whittaker
et al. (1996) who found that the two locations and effects of two
QTLs in adjacent marker intervals are not jointly estimable. Note
that dK

1
and dK

2
are consistent estimates of d

1
and d

2
if the effect a

1
and

a
2

are large, but not if these effects are small or moderate.
Let ¸*1+(dK

1
) (resp. ¸*1+ (dK

2
)) be the maximum of the log-likelihood

¸(a
1
, d

1
"dK

1
, k, p) where the parameter d

1
is fixed at the value dK

1
(resp. d

2
"dK

2
). We propose the following procedure to test whether

or not there is more than one QTL:

— Compute ¹
4
(dK

1
)"2(¸*2+!¸*1+(dK

1
)) and ¹

4
(dK

2
)"2(¸*2+!

¸*1+(dK
2
))

and let
¹ *1+

4
"max(¹

4
(dK

1
), ¹

4
(dK

2
)) and ¹ *2+

4
"min(¹

4
(dK

1
), ¹

4
(dK

2
))

— If ¹ *2+
4
'j

4
, then decide there is more than one QTL.

This test ¹ *2+
4

is called ‘‘two-QTL model’’.
The threshold j

4
is chosen such that

Pr(¹ *2+
4
'j

4
and ¹ *1+

4
'j

4
)"Pr(¹ *2+

4
'j

4
)4a

2

for a
2
"0 and all possible values of a

1
, d

1
, k, p. As for tests ¹ *2+

1
,

¹ *2+
2

and ¹ *2+
3

, the threshold j
4

is taken as the maximum of the
thresholds obtained by simulation for different values of the para-
meters a

1
and d

1
.

Method using the shape of the likelihood

In this section, we propose to build a test by combining two different
estimates of a2

1
, the square of the effect of the first QTL. One estimate

will be the usual maximum likelihood estimate aL 2
1

obtained with an
interval mapping procedure under the one-QTL model. The second
estimate is described in the following.

A new estimator of a2
1

Consider the model with one QTL located at d
1
. We can compute

the estimate aL
1
(m) of the effect a

1
at each marker position dM

m
, for

m"1,2,M. The expectation of the square of this estimation is,
neglecting terms of order n~2

E(aL 2
1
(m))"(1!2r( DdM

m
!d

1
D ))2a2

1
#

p2

4n
.

Consider now the family of estimator aL 2
1
(j)

aL 2
1
(j)"

M
+

m/1

aL 2
1
(m)j (m)!

p2

4n

M
+

m/1

j(m)

where j (m), m"1,2 ,M are real constants. The aim is to find a set
of weights j (m) m"1,2 ,M such that the estimator aL 2

1
(j) is un-

biased for all possible locations of the QTL. It is not possible to find

such a weighting, but we propose to use a weighting such that the
estimator is unbiased for all the locations of the QTL which are on
a marker. It is easy to find this weighting by solving the linear
system:

M
+

m/1

j (m)(1!2r( DdM
m
!d

1
D))2"1

for d
1
"dM

1
,2, dM

m
,2 , dM

M
.

For a chromosome of 100 cM, with six equally spaced markers,
we found

j(1)"j (6)"0.69 and j(2)"j (3)"j(4)"j (5)"0.38

Simulations (not shown) showed that this estimator remains rela-
tively unbiased for the location of the first QTL which is between
two markers, when the effect of the QTL is not too large.

Test construction

Now, if there is only one QTL on a chromosome, the maximum
likelihood estimate aL

1
obtained with an interval mapping method,

can be used to build an approximate unbiased estimator of a2
1

aJ 2
1
"(aL

1
)2!varY (aL

1
)"(aL

1
)2!4

p2

n

where varY (aL
1
) is an approximate estimate of the variance of a2

1
,

obtained as if the location of the QTL was known and on a marker.
Now, we have two different estimates aL 2

1
(j) and aJ 2

1
, of a2

1
whose

sensibility to a second putative QTL is different. The joint distribu-
tion of these estimates is very difficult to establish analytically.
Nevertheless, different test statistics for a second QTL can be con-
sidered with the general form:

¹(g)"
aL 2
1
(j)!aJ 2

1
(aJ 2

1
)g

.

The choice of the parameter g can be made empirically in such
a way that this test can be similar and powerful. Another required
quality is that the distribution of the test statistic does not depend
heavily on the marker density and on the number of individuals. The
value g"0.75 was found to give the better results and will be used in
the next section. The corresponding test statistic will be denoted
¹ *2+

5
"¹(0.75), and called ‘‘likelihood shape’’.

We propose the following procedure to test whether or not there is
more than one QTL:

— compute ¹ *1+. If ¹ *1+(j decide ‘‘there is no QTL’’. The threshold
j is chosen such that the first-type error is a

1
.

— if ¹ *1+'j, then compute ¹ *2+
5

. If ¹ *2+
5
'j

5
then decide that there

exist more than one QTL.

The threshold j
5

is chosen such that

Pr(¹ *2+
5

'j
5

and ¹ *1+'j)"a
2

for a
2
"0 and all possible values of a

1
, d

1
, k, p.

As for the previous tests the threshold j
5
is taken as the maximum

of the thresholds obtained by simulations for different values of the
parameters a

1
and d

1
.

Numerical comparisons of the test statistics

All the simulations were made with n"500 and
n"150 individuals and a residual variance p2"1. We
considered six equally spaced markers and a chromo-
some of 1 Morgan length. As in Whittaker et al. (1996),
the computation of the test statistics can be done using
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the statistics S
m
, m"1,2 ,M

S
m
"

n
+
k/1

y
k
1
Mm,k/A

!

n
+
k/1

y
k
1
Mm,k/B

These statistics S
m
, m"1,2 , M are sufficient for the

parameters of the two-QTL linear model, if the para-
meters k and p2 can be considered as known. Actually,
they can be viewed as asymptotically sufficient.

Threshold

The threshold j corresponding to the test ¹ *1+ for
a level a"0.05 was calculated using the method of
Rebaı̈ et al. (1994). In Tables 1 and 2, we give the
thresholds j

i
, for i"1,2 , 5 for a level a"0.05 and

a level a
2
"0.05, and the probabilities Pr(¹ *2+

i
'j

i
and

¹ *1+'j), for i"1, 2, 5 and Pr(¹ *2+
i

'j
i
) for i"3, 4,

obtained with 10 000 replications for several values of
a
1

and d
1
. Table 1 corresponds to the case with 500

individuals and Table 2 to the case with 150 indi-
viduals. As its behavior is clearly described in the case
n"500, the test ¹ *2+

1
‘‘fixed first QTL’’ is given only in

this case.
Values of a

1
used in these simulations do not cover

the space of all possible values of this parameter.
Nevertheless, we have seen that values of the para-
meter a

1
larger than those used in Tables 1 and 2 gave

Table 1 Probabilities Pr(¹ *2+
i
'j

i
and ¹ *1+'j) for i"1, 2, 5 and

Pr(¹ *2+
i

'j
i
) for i"3, 4 with n"500 individuals and different

values of QTLs position and effect

a Test Position

0 0.1 0.2 0.3 0.4 0.5

0.2 ¹ *2+
1

1.6 1.2 1.4 1.1 1.8 1.1
¹ *2+

2
1.5 1.2 1.5 1.0 1.5 1.1

¹ *2+
3

1.9 1.4 1.9 1.1 2.0 1.4
¹ *2+

4
2.7 2.5 2.7 1.9 3.0 2.2

¹ *2+
5

1.7 1.3 1.0 1.1 1.0 1.2

0.3 ¹ *2+
1

3.6 2.3 3.2 1.7 3.4 1.9
¹ *2+

2
3.5 2.7 2.6 1.9 2.9 2.3

¹ *2+
3

3.3 2.7 3.4 2.0 3.0 1.8
¹ *2+

4
3.4 3.5 3.6 2.7 3.5 2.7

¹ *2+
5

3.3 2.7 1.8 3.0 2.3 3.2

0.4 ¹ *2+
1

5.0 3.4 4.0 2.8 4.8 2.8
¹ *2+

2
5.0 4.0 3.7 3.0 4.2 3.3

¹ *2+
3

4.6 3.9 4.1 2.6 3.4 2.4
¹ *2+

4
4.4 3.8 4.1 2.8 4.4 3.5

¹ *2+
5

3.9 3.8 2.8 4.0 3.0 4.1

0.5 ¹ *2+
1

5.0 3.8 4.6 3.2 4.5 3.4
¹ *2+

2
5.0 4.2 4.1 3.0 5.0 4.0

¹ *2+
3

5.0 4.3 4.5 3.5 3.9 3.1
¹ *2+

4
5.0 4.5 4.3 5.0 4.7 5.0

¹ *2+
5

3.8 3.8 2.5 4.3 3.2 5.0

j
1
"6.03, j

2
"6.19, j

3
"6.64, j

4
"6.82, j

5
"1.41

Table 2 Probabilities Pr(¹ *2+
i

'j
i

and ¹ *1+'j) for i"2, 5 and
Pr(¹ *2+

i
'j

i
) for i"3, 4 with n"150 individuals and different

values of QTLs position and effect

a Test Position

0 0.1 0.2 0.3 0.4 0.5

0.4 ¹ *2+
2

1.9 1.5 1.7 1.3 1.8 1.3
¹ *2+

3
2.4 2.2 2.0 1.6 2.4 1.9

¹ *2+
4

2.9 2.7 3.1 2.5 3.2 2.2
¹ *2+

5
1.3 1.2 1.3 1.2 1.2 1.4

0.6 ¹ *2+
2

3.7 2.9 3.2 2.2 3.7 2.7
¹ *2+

3
3.8 3.1 3.4 2.2 3.5 2.4

¹ *2+
4

4.2 3.3 3.8 2.6 3.7 2.9
¹ *2+

5
3.1 2.8 2.4 3.0 2.6 3.1

0.8 ¹ *2+
2

4.8 3.6 3.8 2.8 4.4 3.9
¹ *2+

3
4.5 4.4 4.4 3.0 4.3 3.0

¹ *2+
4

4.7 4.1 4.2 3.2 4.2 3.7
¹ *2+

5
3.9 3.6 2.9 4.4 3.5 4.5

1.0 ¹ *2+
2

5.0 4.6 4.1 3.3 5.0 4.0
¹ *2+

3
4.9 5.0 4.9 3.4 4.2 3.7

¹ *2+
4

4.0 4.3 4.3 4.8 4.7 5.0
¹ *2+

5
4.0 4.3 3.5 5.0 3.9 5.0

j
2
"6.27, j

3
"6.54, j

4
"6.96, j

5
"0.24

approximately the same distribution for the tests statis-
tics as that obtained for the largest value in these tables.
More, it indicates that the thresholds could be cal-
culated with only the large values of Ea

1
E, cases in

which it would be possible to find analytical approxi-
mations of the probability distribution functions of the
tests.

It appears that none of the tests are similar; that is,
with a probability distribution function not depending
on the parameters. The most similar test seems to be
¹ *2+

4
, ‘‘two-QTL model’’. Test ¹ *2+

5
, ‘‘likelihood shape’’,

is the less similar. In general, the thresholds depend on
the position of the QTL, and in particular if the QTL is
on a marker or between two markers.

The thresholds of test ¹ *2+
2

, ‘‘fixed first-QTL inter-
val’’, ¹ *2+

3
, ‘‘multiple-QTL model’’, and ¹ *2+

4
, ‘‘two-QTL

model’’, depend very weakly on the number n of indi-
viduals. The threshold of test ¹ *2+

5
, ‘‘likelihood shape’’,

depends on n. This is not a problem as it is always
possible to compute the correct threshold for a new
value of n, but it can be a practical limitation to the use
of this test. A slightly different version of test ¹ *2+

5
,

obtained as the product of ¹ *2+
5

with a function of n,
could solve this problem.

Power

We consider here that the power is the probability to
detect more than one QTL when there are two QTLs;
that is, the probabilities Pr(¹ *2+

i
'j

i
and ¹ *1+'j), for

631



Table 3 Power of test ¹ *2+
i

for i"1,2 , 5 with n"500 individuals
and different values of QTLs position and effect

Da
1
D Da

2
D Test Position

(0.1, 0.9) (0.3, 0.7)
Coupling Repulsion Coupling Repulsion

0.3 0.3 ¹ *2+
1

39.8 46.9 11.9 17.6
¹ *2+

2
41.2 46.8 13.4 17.3

¹ *2+
3

25.1 27.5 7.2 18.1
¹ *2+

4
37.6 54.9 20.3 39.6

¹ *2+
5

62.6 (5.0 29.1 (5.0

0.5 0.3 ¹ *2+
1

64.3 69.4 23.8 39.6
¹ *2+

2
63.9 69.4 26.6 42.2

¹ *2+
3

44.6 47.4 20.3 31.9
¹ *2+

4
62.8 68.2 44.7 50.9

¹ *2+
5

73.1 (5.0 38.7 (5.0

0.4 0.4 ¹ *2+
1

79.7 84.1 27.7 44.2
¹ *2+

2
80.7 83.1 31.8 43.7

¹ *2+
3

58.1 61.9 24.6 41.5
¹ *2+

4
79.7 86.1 53.6 68.4

¹ *2+
5

89.1 14.0 46.3 (5.0

0.4 0.2 ¹ *2+
1

28.2 33.7 9.5 15.9
¹ *2+

2
27.4 33.5 10.4 16.9

¹ *2+
3

17.3 20.2 7.4 12.6
¹ *2+

4
25.2 36.1 17.0 24.4

¹ *2+
5

44.4 (5.0 23.5 (5.0

i"1, 2, 5 and Pr(¹ *2+
i
'j

i
) for i"3, 4. We do not

consider situations with more than two QTLs.
In Tables 3—5 we give the power of the different tests

for different values and positions of two QTLs obtained
with 10 000 replications. Table 3 corresponds to the
case with 500 individuals and Table 4 corresponds to
the case with 150 individuals. The distances between
the two QTLs is greater than 40 cM in Tables 3 and
4 and equal to 20 cM in Table 5.

The first result is that the rank of the three tests ¹ *2+
1

,
‘‘fixed first QTL’’, ¹ *2+

2
, ‘‘fixed first-QTL interval’’, and

¹ *2+
3

, ‘‘multiple-QTL model’’, is almost always the same
in all the situations. Test ¹ *2+

2
is slightly better than

¹ *2+
1

, which is better than ¹ *2+
3

. This is because test
¹ *2+

3
is designed to detect the presence of any QTL in

any interval and not only to find an effect of a QTL
located in another interval. Test ¹ *2+

4
, ‘‘two-QTL

model’’, is slightly less powerful than test ¹ *2+
2

, ‘‘fixed
first QTL’’ for distant QTLs, but is more powerful for
QTLs less than 60 cM apart. Test ¹ *2+

5
, ‘‘likelihood

shape’’ is more powerful than the other tests in some
situations where the two QTLs are in coupling phase.
Test ¹ *2+

5
has a very low power when the QTLs are in

repulsion. One way for comparing more fairly this test
with the other tests in the coupling case is to use
a threshold corresponding to a level of 2.5% for test
¹ *2+

5
. We found, for example in case n"500,

Ea
1
E"Ea

2
E"0.3, position 0.1 and 0.9, a power of

Table 4 Power of test ¹ *2+
i

for i"2,2, 5 with n"500 individuals
and different values of QTLs position and effect

Da
1
D Da

2
D Test Position

(0.1, 0.9) (0.3, 0.7)
Coupling Repulsion Coupling Repulsion

0.5 0.5 ¹ *2+
2

24.1 32.7 7.6 11.3
¹ *2+

3
15.8 18.9 (5.0 13.5

¹ *2+
4

20.3 40.0 9.7 29.5
¹ *2+

5
45.5 (5.0 21.9 (5.0

1.0 0.5 ¹ *2+
2

45.2 55.4 16.4 34.5
¹ *2+

3
31.7 37.0 12.2 26.5

¹ *2+
4

43.8 52.4 29.7 39.7
¹ *2+

5
58.0 (5.0 35.5 (5.0

0.7 0.7 ¹ *2+
2

65.1 72.7 20.7 34.0
¹ *2+

3
44.1 48.6 12.3 33.4

¹ *2+
4

62.5 76.0 35.1 58.0
¹ *2+

5
79.3 9.7 42.3 (5.0

0.7 0.4 ¹ *2+
2

26.4 34.3 9.2 16.9
¹ *2+

3
17.1 20.4 5.4 14.0

¹ *2+
4

23.4 37.4 13.2 26.7
¹ *2+

5
43.4 (5.0 23.3 (5.0

Table 5 Power of test ¹ *2+
i

for i"2, 3, 5 with n"500 individuals
and different values of QTLs position and effect

Da
1
D Da

2
D Test Position

(0.3, 0.5)
Coupling Repulsion

1.0 1.0 ¹ *2+
2

7.8 18.6
¹ *2+

4
23.4 43.1

¹ *2+
5

30.2 (5.0

1.0 0.8 ¹ *2+
2

6.1 14.6
¹ *2+

4
19.3 30.3

¹ *2+
5

24.7 (5.0

54.5%, which remains higher than the power of the
other tests.

Discussion

In this paper we studied the power of detection of more
than one QTL in the case where there are two QTLs.
We did not consider the case of more than two QTLs,
and we did not address the problem of locating the
QTL. The conclusions of the test are simply that one
unique QTL cannot explain the data. It would be
possible to continue the process by testing three QTLs
against two, and so on. Nevertheless, our opinion is
that the power of such tests would be very low.

We do not use here the infinitesimal model of Vis-
scher and Haley (1996) as the null hypothesis. This
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model is perhaps a more realistic framework but would
have confused the comparisons.

None of the tests considered appears to be similar.
Our opinion is that it is not possible to find similar tests
for this problem. A ‘‘naive’’ choice would have been to
assume that all the tests are distributed as central s2
with 1 df under the null hypothesis. The s2 quantile
with tests ¹ *2+

1
or ¹ *2+

2
, for example, would have led to

the first-type error attaining 17% for a desired level of
5%. In the situations considered in this paper a s2 with
2 df as proposed by Wu and Li (1996) would give better
results, but it is only by chance as the correct threshold
would be different with other chromosome lengths or
marker densities. For example, with a chromosome of
2 Morgans and 40 equispaced markers, the first-type
error is 22.7% when using the threshold 5.99 corres-
ponding to a s2 with 2 df. The theoretical justification
of such threshold given by Whittaker et al. (1996) is not
correct as it considers only one interval and not the
complete chromosome and it does not take into ac-
count the constraint on the range of the transformed
parameters (b

j
and b

j`1
in their notation are not free to

take all possible values in R2).
In most situations, test ¹ *2+

4
is the more powerful test,

test ¹ *2+
5

being better in the other situations. A possible
strategy could be to use first ¹ *2+

4
and then, in the case

where this test is not significant, to use ¹ *2+
5

. Formally,
this sequential way of testing needs further investiga-
tion in order to calculate the correct threshold. For
practical purposes, tests ¹ *2+

1
, ‘‘fixed first QTL’’, or ¹ *2+

2
,

‘‘fixed first-QTL interval’’, are easier to use and present
correct powers in cases with distant QTLs. Neverthe-
less, these tests do not offer correct answers for the
problem of non-existing ‘‘ghost’’ QTLs (Haley and
Knott 1992).

Jansen (1993, 1994) proposed to use the Akaike cri-
terion to select the markers to be used as covariates in
the regression. Basten et al. (1996) proposed a stepwise
regression procedure to select the markers. These strat-
egies could be incorporated in the test ¹ *2+

2
, but we do

not use these procedures here to select the markers
because it was harder to implement automatically the
process of marker selection.

On the other hand, there is no problem using
markers belonging to other chromosomes as covariates
in all the tests. It would have increased the power of all

the tests, but would not have changed the comparisons
between them.

The simulations have been made at a 5% level. In
general, one would use a more stringent level for each
chromosome to obtain a global level of 5% or 10% for
the whole genome. In this case, all the powers would be
smaller than shown in this study, but the comparison
would have led to the same conclusions. The correct
threshold corresponding to this level would have been
harder to compute because the variance of the estima-
tion of this kind of quantile is very large.
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